ABC: The Way It Should
Have Been Designed

Alan Mishchenko

epartment of EECS, UC Berkeley



Industrial Supporters (since 2005)

e CAD tool companies
e Synopsys, Mentor, Cadence, Verific, Magma (Synopsys),
Atrenta (Synopsys), Jasper (Cadence), Oasys (Mentor)
e FPGA companies
e Xilinx, Altera, Synplicity (Synopsys), Actel (Microsemi), Abound
Logic (Lattice), Tabula
e System design companies
e IBM, Intel

rom federal and industrial funding agencies



Overview

e |Introduction
e Hits and misses

e Lessons learned

e Front-end and back-end
e Optimization flow

e Data structures
ramming




Introduction

e Disclaimer: This presentation may be boring if one
does not develop or does not consider developing
an “industrial-strength academic tool” such as ABC

e ABC has a 15-year history

e |t started as an academic tool and soon became
Wr with industry (especially with start-ups)
\\as\ replacement for SIS

e |t is ahit-and-miss in terms of its usefulness
e This presentation shares the lessons learned



ABC Hits

e |t is based on what we believe to be
cutting-edge research ideas

e |t offers a low-cost and often competitive
iImplementation of fundamental algorithms

e AlG rewriting, tech-mapping, SAT sweeping,

Xr\etiming, equivalence checking, etc

is often fast and low-memory
e [t isreliable (if we use it in a known way)

o ltis act%e?\\developed and supported



ABC Misses

e Inadequate Verilog parser

e Does not natively support much of the
“Industrial stuff” (complex flops, multiple
clocks, memories, design constraints, etc)

e requires elaborate workarounds to be useful
documentation
dundant source code

o A



Lessons: Front-End and Back-End

e Having a variety of formats is useful, but...

e Reading and writing Verilog is a must!

e If a general-enough Verilog parser cannot be
developed, integrate with Yosys

Absolutely need well-documented APlIs for
rating with external tools!

S been addressed to some extent




Lessons: Optimization Flow

e AIG is a good unifying data-structure
e Do not hesitate to base computations on AlGs

e Need parametrizable optimizers
e Rather than having optimizations geared to a

specific representation (AIG/MIG/XMIG/etc)
%d one generic cut-based tech-mapper
forall technologies (gates, LUTSs, etc)

e Need t&&suiort the “industrial stuff’!



Lessons: Data Structures

e Develop a clean minimalistic data-structure
for each package (conversions between
data-structures are easy and fast)

e Reduce memory for large data-structures

/|

and runtime will be reduced
ﬁﬂue about AIG, logic network, hierarchical netlist
o

henever possible, use 32-bit integers

®a MiniiATe SAT solver is a good example



Lessons: Programming

e Strive for maintainability
e Minimize dependency between packages

e Strive for reproducibility

e Implement your own floating point number
Strive for thread-safety

e no global and static variables

ime to build a set of handy tools

tick with C (can mix C and C++)




Conclusion

e Talked about ABC
e Reviewed gains and losses
e Learned from past mistakes - hopefully ©



Abstract

e Twelve years ago, in September 2005, the first public
version of ABC was released. It featured technology-
iIndependent synthesis by DAG-aware rewriting,
technology mapping for standard cells and lookup tables,
and simple combinational equivalence checking, all
based on the And-Inverter Graphs (AlIG) data-structure
used to unify the computation flow. In the coming years
ABC has been adopted as an optimization engine and a

research environment by a number of academic and
\h:.%trial users. The use that followed exposed a
\‘\&Bm er of shortcomings in the original design of

C.._This talk focuses on what is present and, more
importantly; what is missing in ABC, and how ABC could
be redes%e to make it more versatile and user-

friendly. The motivation for this talk is to help academic
researchers maximize the usefulness of their tools and
set a new sfvda d for future versions of ABC.



